Research
Clarifying the role of Nutrition in Musculoskeletal Homeostasis and Repair
Project 1: Gut Microbiota Control of Fracture Healing and Pain
Simple bone fractures rapidly induce dysbiosis. We use behavioral and molecular assays to understand the contribution of the gut microbiota to fracture-induced pain. We are particularly interested in understanding how fracture-induced dysbiosis promotes inflammatory pain through interactions with the immune system and microbial-derived metabolites.
Project 2: Therapeutic effects of probiotics and dietary bioactive compounds on fracture-induced pain and functional impairments
We utilize behavioral and molecular assays to understand how probiotics and dietary bioactives influence pain and function during recovery from femoral fracture. We are focusing our efforts towards identifying novel postbiotics that mediate these effects that can serve as adjuvant therapies.
Project 3: Understanding of influence of age and the gut microbiota on metabolic flexibility/inflexibility after musculoskeletal injury
The common orthopaedic trauma patients is often malnourished, which can negatively impact bone repair. We are utilizing state-of-the-art assessments to decipher the contribution of age, baseline nutritional status, and the gut microbiota to metabolic responses to traumatic bone injuries and healing outcomes.
Project 4: Effects of Time-Restricted Feeding on Bone Health
Time-restricted feeding has become a popular dietary approach that exerts many beneficial effects on numerous tissues. We are utilizing a pre-clinical models to determine the impact of time-restricted feeding on musculoskeletal health during aging.